Antagonistic effects leading to turn-on electrochemiluminescence in thermoresponsive hydrogel films.

نویسندگان

  • Haidong Li
  • Milica Sentic
  • Valérie Ravaine
  • Neso Sojic
چکیده

We report the effects of the swell-to-collapse transition on the electrochemical and electrochemiluminescence (ECL) properties of thermoresponsive pNIPAM films incorporating covalently-attached Ru(bpy)32+ luminophores. Upon the collapse of the film, the number of electrochemically-active Ru(bpy)32+ centers increases, due to the reduced distance between adjacent redox centers. To generate ECL, cationic and anionic coreactants are employed, which are free to diffuse in the medium. In both cases, the ECL intensity exhibits a remarkable amplification of up to 58-fold at the swell-to-collapse transition, whereas the oxidation current undergoes a steep decrease in the case of the cationic coreactant. Indeed, the diffusion of the coreactant is hindered by the collapse of the film. The fact that ECL emission is enhanced whereas less coreactant radicals are generated is an intriguing observation because it is classically believed that the higher the oxidation rate of the coreactant the stronger the ECL emission. Thanks to the study of such films where antagonistic effects occur, we demonstrate that ECL enhancement is neither correlated with the oxidation efficiency of the coreactant nor with the hydrophilic-hydrophobic transition, but solely due to film shrinking. The decrease of the distance between adjacent redox centers, which favors better electron-transfer processes, is found to be the main parameter governing the ECL enhancement. Finally, it is noteworthy that the present turn-on ECL signal with increasing temperature is unique compared to many thermoresponsive luminescent systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Loratadine- Loaded Thermoresponsive Hydogel : Characterization and Ex-vivo Rabbit Cornea Permeability Studies

Poor bioavailability of ophthalmic drops is mainly due to drainage through the nasal-lacrimal duct and a very low permeability through corneal epithelium. The aim of our study was to prepare and characterize an ocular hydrogel of loratadine, as an example of a lipophilic drug, to increase drug concentration and residence time at the site of action in the eye. In this study,a 23full factorial de...

متن کامل

Preparation and Characterization of Thermoresponsive In-situ Forming Poloxamer Hydrogel for Controlled Release of Nile red-loaded Solid Lipid Nanoparticles

Preparation and characterization of thermoresponsive in-situ forming poloxamer hydrogel for controlled release of Nile red-loaded solid lipid nanoparticles. Nanoparticles (NPs) are cleared rapidly from systemic circulation and do not provide sustained action in most cases. To solve this problem, this investigation introduces an erodible in-situ forming gel system as potential vehicles for prolo...

متن کامل

Loratadine- Loaded Thermoresponsive Hydogel : Characterization and Ex-vivo Rabbit Cornea Permeability Studies

Poor bioavailability of ophthalmic drops is mainly due to drainage through the nasal-lacrimal duct and a very low permeability through corneal epithelium. The aim of our study was to prepare and characterize an ocular hydrogel of loratadine, as an example of a lipophilic drug, to increase drug concentration and residence time at the site of action in the eye. In this study,a 23full factorial de...

متن کامل

Nanoscale characterization of the equilibrium and kinetic response of hydrogel structures.

The use of hydrogel nanostructured patterns and films in biomedical micro- and nanodevices requires the ability to analyze and understand their response properties at the nanoscale. Herein, the thermoresponse behavior of atom transfer radical polymerization (ATRP) grown poly(ethylene glycol) n dimethacrylate (PEGnDMA) cross-linked poly(N-isopropyl acrylamide) (PNIPAAm) hydrogel thin films over ...

متن کامل

Recognition‐Mediated Hydrogel Swelling Controlled by Interaction with a Negative Thermoresponsive LCST Polymer

Most polymeric thermoresponsive hydrogels contract upon heating beyond the lower critical solution temperature (LCST) of the polymers used. Herein, we report a supramolecular hydrogel system that shows the opposite temperature dependence. When the non-thermosesponsive hydrogel NaphtGel, containing dialkoxynaphthalene guest molecules, becomes complexed with the tetra cationic macrocyclic host CB...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 18 48  شماره 

صفحات  -

تاریخ انتشار 2016